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Closed Form Solution for the Sonic Boom in a
Polytropic Atmosphere
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The sonic boom problem for typical aircraft maneuvers in a polytropic atmosphere is solved analytically
using the analytic method of characteristics. The linearized wave propagation, which serves as initial solution

to the method of characteristics, is solved first.

The velocity perturbations are multiplied by the factor

(CopDop/CoPa)* 2. 'With ¢, as local sound velocity and p, as local static pressure, the product c,p, is, per unit time,
the work done by the static pressure at local altitude, and ¢,,p,, is the corresponding quantity at flight altitude,
The characteristic method is modified to encompass the case of an oncoming stream with variable sound velocity.
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constants of integration

body length

Mach number related to c,,

gradient of the speed of sound
pressure

radius of curvature of the flight path
instantaneous radius of the wave front
ray

time dimensionless by / and c¢,p
velocity vector
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lateral angle

bicharacteristics

source position

density

time of the source

angle between flight path and horizontal plane
retarded potential
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reduced quantities
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Subscripts

local quantity of the polytropic atmosphere

first, second-order quantity

component in the direction of the wave-front normal
quantity at flight altitude

component in radial direction

component in tangential direction

vector components in x, y, z direction
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Introduction

HERE is a need for analytical methods that are capable
‘ of accurately predicting the near-flow region about
arbitrary aircraft configurations. Awvailable theories are
either too cumbersome or limited in range of application.”
This is a statement of a paper presented at the Second
Conference on Sonic Boom.! In the present paper an
analytical perturbation method is outlined, which describes
both the near-flow region and the far field in a polytropic
atmosphere. This method predicts the near-flow region
about a three-dimensional aircraft configuration with the
same accuracy as those methods, which are valid only in a
homogeneous atmosphere. The sonic boom propagation
in a polytropic atmosphere is reduced to a propagation in an
isothermal one, which has been solved by the author in a
previous paper.?

General Description

In the analytical method of characteristics, characteristic
manifolds are used as independent variables (see Refs. 3-7).
Therefore, by straining the coordinates, regions of dependence
and influence are obtained correctly, and in contrast to van
Dyke’s method,® the first-order solution is valid throughout
the whole flow field. The linearized solution of the character-
istic space serves as initial solution to the analytic method of
characteristics. This solution, which is also called ““acoustic
solution,” gives the correct first-order behavior of the flow
on the characteristics.

In the next step, the correct first-order position of the
chatacteristics will be obtained by means of the perturbed
coordinates. Then shock waves can be constructed using
Pfriem’s formula. This procedure is similar to Whitham’s
for homogeneous atmosphere,® but because of the analytical
method of characteristics (see Refs. 4-5), higher orders can
be calculated,'® ** as well as interference phenomena between
different families of characteristics'?'® and transonic
problems.'* Furthermore, the three-dimensional configur-
ation of an aircraft can be taken into account, in particular
in those cases where the equivalent body of revolution fails, as
was shown by Oswatitsch and Sun for the sonic boom
resulting from lift under a delta wing.2*: 22

The present paper is restricted to the influence of a poly-
tropic atmosphere. Therefore, only bodies of revolution are
considered, though the method presented could be extended,
for example, to the previously-mentioned delta wing. The
calculations concerning the sonic boom are restricted to shock
waves and their immediate neighborhood. Some results of
this method were presented by the author as contributed
remark at the Third Conference on Sonic Boom.!> Here
the method itself is presented.
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Analytic Method of Characteristics

In the analytical method of characteristics of Oswatitsch,®
bicharacteristics are used as independent variables. The
physical coordinates (including the time)

X=Xo+ X1+ X2+""7;
Z=zo+zZi T z2+ "5

Yy=Yo+yi1+y:2+--°; 6
t=to+ti+ta+ -

as well as the velocity and the thermodynamic variables

P =pPotpit+pat-;
¢ =coftert+ex2t;
Uy =Usy+ Uzy...;

P =potpitpt-;
ux:u1x+u2x+'“; (2)
U, = Uy, + Uz

are expressed by power-series expansion in a small parameter,
which is the thickness ratio in the case presented. There are
no zeroth-order velocities, since a wind-coordinate system is
used.

The characteristic space indicated by the coordinates
Xo, Yo, 2o and ¢, coincides with the physical space indicated by
x, ¥, z and ¢, if the perturbation coordinates x;, y;, z; and #;
vanish. These perturbation coordinates follow from the
relations for the characteristic directions and determine the
position of the characteristics in the physical space.® The
head wave is located very close to the characteristic front which
separates the perturbed region from the undisturbed field
(see Fig. 1). ’

The characteristic front—in the following, denoted as
“acoustic perturbation front”—is shown for the vertical
X., Zo plane above and below the horizontal flight path (see
Fig. 1). Itis calculated by means of geometric acoustics, and
it is the envelope of Mach conoids with their tips on the
flight path. 7The tips of the conoids are indicated by the
points ¢,, x, with the static pressure p,, at the origin and the
corresponding Mach number M. Though the method
presented can be extended to atmospheric variations, a
polytropic atmosphere with a linear sound velocity gradient

dco/ dz o =m (3)

is used, since the corresponding geometric acoustics have been
investigated extensively by Lansing.'® According to the
mathematical theory for envelopes in a parametric represent-
ation, the acoustic perturbation front is given by the equation
of the Mach conoid

(xo — x5)* + (za — %{cosh]A(to —t)| — 1})2

= Zli sinh?| A(t, — 1,)] @)

above
flight path

belo t 2
flight path Vs
I X 7 flight path

X s

& 7
Mach Conoid N gl

o
A”b acoustical perturbation front
7,

Zo [
! 2

Fig. 1 The acoustical perturbation front is the envelope of Mach
or Monge conoids. It is shown at different times 7, for the vertical
Xo, Zo-plane, which contains the flight path.
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Differentiation of Eq. (4) with respect to the parameter ¢,
yields

(%o — Xop)M + (— Z,+ i;{coshlA(t., —t)| — 1}) X

. 1.
sinh| A(t, — top)| = 1 sinh| A(z, — t.,)|cosh|A(t, — )| (5)

where
X0 =ty + Bt [2) ©
M =1+ B4,
and
A =mljc, )
B, = bljc.,* ®)

Every Mach conoid has in common a tangent with the
envelope (see Fig. 1), and is used as a parameter for the shock-
wave propagation along this tangent. The tangent of the
Mach conoid with the envelope lies in the bicharacteristic
surface » =0 and its projection on the x, — z, plane is also
denoted as ray s. The gradient of the envelope in sections
t, = const is given from geometrical acoustics!®

dz, Cop\’” -z
| (e) -] ®

where M c.p/c, is the local Mach number. The curvature of
the envelope in sections ¢, = const is given by

| zM?—-1)"2 B, Cor)’ vz
K'_{A M(x, — x,) +M [(Mc,, !

{[(M %)2 - 1] (M? — D2 — B0 — x,) X

¢ 2 172y ~1
() ]} o
Co
The plane perpendicular to the acoustic perturbation front
(Fig. 1) is indicated by the ray and the axis of the Mach
conoid. The bicharacteristics u =const and v = const are
generated by intersections of bicharacteristic surfaces with the
perpendicular plane. Thus, the problem depends only on the
parameter ¢, and the two variables p and v, since shocks are
calculated in these perpendicular planes. The bicharacter-
istics p = const are chosen so that along the (¢, — ¢,) axis
they are perpendicular to the bicharacteristics v = const
(see Fig. 2a).
Let the distance measured along the ray from the origin
be s, and introduce the abbreviations

_ * Cop
§= L os) ds 1)

and

L=t,—1,

§ represents a distorted ray, so that the bicharacteristics are
perpendicular to each other over the 7,, § plane (see Fig. 2b).
The bicharacteristics are

2u="F~+4§ 12)
v=14F—§
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ty-t,

'{r’
«
&)
<
P "0
<

a) Bicharacteristics in
the normal surface

So

b} Bicharacteristics in the
distorted normal surface

Sa
Fig. 2 The distance measured along the ray s, (Fig. 2a) is distorted

by means of 5, [Eq.(11)] such, that the bicharacteristics  and v are
perpendicular to each other (Fig. 2b).

Now the zeroth-order coordinates can be calculated by means
of geometrical acoustics*®

123 +v= t-a
p—v=235=(1/A4) arsinh| AR|
R is defined by Eq. (26) (13)

1 1. ,
Xo— Xop =37 (Co/Con) i sinh | A7, |

2o = (Cof ACop)[1 — (Cop/C0)]
with
CoplCo = COSh | AF,| — (1/M)(M? — 1)!/2 sinh | A%, |

Using the wind-coordinate system, one can calculate the
first-order coordinate perturbations after Oswatitsch®

s t= [ i)+ e@uda + o)
no (14)

s+ th= J: {usn(p,7) — 1(u,2)}dv + Ko(u)

uyy is the first-order perturbation velocity in the direction of
the ray, which in a still atmosphere is always in the direction
of the acoustic perturbation front normal. u,5 follows from
the acoustic wave propagation in a polytropic atmosphere.

Analytic Solution of the Wave Propagation

The system of differential equations describing the wave
propagation in a polytropic atmosphere can be linearized with
respect to small perturbations. One then obtains the follow-
ing differential equations for the conservation of mass,
momentum and energy

1 6p1 ap,, 8u1x auly 9ulz
(copa_t.,+ulz52: + o —+ 7 + 7.

=0 (15

o

Cop(aulx/ato) = ”’(I/PO)(aPl/axa)
cop(al’hy/ato) = _(I/Po)(apl/ayo) (16)
Cop(O1:102,) = —[(1/pa)(8P1/020)] — gl(p1/po)

1 3p1 ap,, . 1 6’)1 apo
¥Po (Cop ot, Tt 320) N Po (atﬂ + i 6_20 an
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Fundamental equation of static meterology:
(l/po)(dpo/dzo) = _gl (18)

The gravity acceleration g enters the equations through the
constant

o =gylfc.,? 19

which is of the order of the body length divided by the v1rtua1
altitude of the homogeneous atmosphere.

Using a transformatior similar to that one used in Refs.
2,17, 18’

ulx,v,Z/co = (Cappop/copt?)l/z izlx,y,Z/cop (20)

and neglecting terms of the order «?, the preceding conservat-
ion equations can be rewritten to give:
Continuity equation

1 8p1_* coppop ad gl 2—7+ 1 dco .ﬁ_l_z
VDo 0ty \ Copo oty | CoCop 2 2€0p A2, | Cop) .

21
where
op O dilye  Bily,  Oihy, .
%g - ci (;; et al;) @
Momentum equations
1 2, o2d o (i,
C otr | axedt, | ox (cop)
25 2 P
cla aafﬁ? - 550%., o (Z) @3
1 824, o%d o (i Cop 0d
S a1 (1) 2
where
1 =(gllcocon)l(2 — )21 + (1/2¢0,)(dco/dz.) 24

This system of differential equations is in formal accor-
dance with the corresponding results of Schrodinger'” and of
Stuff.? Now the function

A 1 * Cop C,
= o — | ——d. — IR
¢ 4 f(t fo col(s) g )/(ca,,) (25)
is introduced, which is analogous to the retarded potential in a

homogeneous atmosphereé. R is the instantaneous radius of
the wavefront (Fig. 3). We have

172

R= (-xoz + y02+ 202)1/2 % (;‘_o + i Aé(xoz + .;Vo2 + Zoz)
o op
(26)

Because of the linear sound velocity gradient [Eq. (3)], the
wave fronts form spheres, which are not concentric.'® s,
s, and s, are the direction cosines of the wave front

st 52452 =1 27
with
S = Xo/R
Sy =Yo/R 28
5z = (2o — % A copfco(Xs® + Yo + 2,%)/R
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Wavefront at different times te

So

R, (radius)

Zy

Fig. 3 The wavefronts of a spherical source in a pblytropié atmo-
sphere are not concentric spheres.

.In case of a spherical source (Fig. 3), the following solution
of the system of differential equations (22-23) applies

od|at, = — (9%/2t,?)

Girx/Cop = (CofCop)(0[0X) + (1)5:5:6)
dixy/Cop = (ColCop)(0/OY0) + (15y5:6)
fi12[Cop = (CofCop)(0[020) — [(1 — 5:2)$] -

Here, terms of the order 52, and those of the order of R~?2
from terms multiplied by 7, have been neglected: The latter
is admissable, since the stratification terms multiplied by %
are only important at large distances from the origin. In
case of a continuous distribution of sources and sinks, the
function ¢ has the form

TrfE g - S, xo,ya,zn))
477 “o (CO/CDP)R(S xoayo,zo)

There are no stratification terms in ¢ and in the absolute value
of the velocity vector &;

[ = (s + @y® + 8V (3D)

All terims of the order % on the right-hand side of Eq. (31)
cancel each other. However, the direction of the velocity
vector i@; does depend on the stratification parameter 7).
The directions of &, and the wave-front normal are not always
the same.'” .Howevet, this effect is small compared with the
first-order perturbations. Therefore, the stratification enters
the problem under consideration mainly through the Egs.

(20). The function ¢ corresponds to the retarded potential
of a homogeneous atmosphere.

(29)

¢_.

dé (30)

Shock Waves

The formulas for the head wave can be easily derived or
directly taken from Refs. 2 and 4. The first-order perturb-
ation velocities of these papers have to be replaced by the
corresponding velocities of the preceding section [Egs. (20,
29 and 31)]. Weak shock waves are located at values for
w and v satisfying the condition

vin <1 (32

(see also Fig. 2). Under this condition and with the aid of the
bicharacteristics (Eq. 12), one obtains the first-order velocity
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perturbation from Egs. (20) and (29), which is located in the
direction of the acoustic perturbation front normal

tinfed(z0) = 2/(y — Dller/enlzo)]
_ [eorper 1/2%
_ [_c;,p,,] . 33)

The differential equation for the head wave is taken from
Oswatitsch*

vy + 1 [uinfcofz0)]

du. 8 1+3_h

(34

This formula indicates that the-shock slope is given by the
bisector of the characteristic slopes in front of and behind the
shock. - In sécond order, the bisector rule is no longer valid, as
shown by Van de Vooren and Dijkstra.!® With the aid of
Egs. (14, 31, 32, and 34), the perturbation coordinates can be
obtained by an integration over the bicharacteristic u

1 .
si=—ti =L [ us@rdat K0 G9)
ko :

The perturbation pressufe p: divided by local static pressure
Po(z,) of the polytropic atmosphere can be obtained from
Egs. (21, 31, 32, and 33)

P1/Pa(Zo) = y(u1n/Co(20)) (36)

Under the condition (32), the first-order position of the shock
wave is represented by the acoustic perturbation front
[Eq. (12)]
w=2_5 =i 37
Let £, describe the path of the body tip. If we use the
body-fixed coordinate ¢ — &, as variable of integration in
Eq. (30), the potential ¢, under the condition (32), can be
separated into two functions. Each of these functions
depends on one blcharacterlstlc only. Now replacing the
derivatives with respect to 2, in Eq. (33) by those with respect

to v and introducing the separated functions, the followmg
equation results for #;n:

uiwle(z0) = MA(M2)" 2 FQuM)G' (1) (38)
with

s"(¢€— &)
(vM — (£, — )'"?

G’(p) is determined in the following sections for some typical
aircraft maneuvers.
Defining

dE.— & (39)

FQvM) =5_1; fo

6w = | G@dn (40)

the connection between p and v on the shock wave is given by
the solution of the shock-wave [Eq. (34)]

Glw) = FQIMIATL(y + DISIMAM2) *F*@vM} (41)

which is similar to Whitham’s result for the homogeneous
atmosphere.®

In order to find an exp11c1t formula, Whitham substituted
the neutral Mach line », for the upper limit v in the integral
of Eq. (41). It should be noted that the F function is zero
on the neutral Mach line »,. The asymptotic formula of
Whitham, therefore, predicts too large values for the pressure
jump across the shock wave for distances of practical interest. 2°
The asymptotic formula of Whitham can be easily improved
by taking into account the distance function G(u) for. the

J. AIRCRAFT

characteristic »*, which hits the shock at a distance u. The
Whitham assumption is used as a first step for calculating v*

v FQoM)di 1z
1z 42
D))

The values for the bow shock calculated in this way are
sufficiently accurate for distance of about 20 body lengths or
larger (see Fig. 5). . If the flow behind the rear shock wave is
undisturbed, the formulas for the head wave apply for the rear
shock wave, t00.2

However, this. method based on the above—mentloned
assumption yields wrong results near the body, whereas the
more complicated method proposed by Whitham® for the
calculation of the rear shock wave can be used in the near and
the far field. For example, an axisymmetric parabolic arc is
taken, with the F function -

FQvM) =219*8Q2vM)"*[1 — 8vM + 64/5(v2M2)] (43)

where 8 is the apex half angle. The distance function G'(u)
[Eq. (38)] depends on both the temperature stratification and
the flight maneuvers; therefore, it has to be determined for
every detailed maneuver separately.

2*M=
Py =01
8

Shock Waves in Case of Accelerafed‘or Decelerated Flight
along a Straight Line

The body is flying with supersonic speed accelerated or
decelerated along a straight line (see Fig. 4). The flight path
is located in a vertical plane denoted by x, and z,, and is
inclined by the angle ® against the horizontal x, axis. The
perturbations propagating along the ray s will be considered.
The vertical plane containing the ray makes a horizontal angle
# with the x, axis.

Flight at Constant Altitude (® = 0)

Shock waves propagating below the flight path are indicated
by 8 =0. The retarded potential at a point P(x,, z,, £,) in the
vertical plané is obtained by an integral over the distribution of
singularities on the flightpath at position & and time 7. The
equation of the Mach conoid that is placed with its tip on
such a singularity is

g — X, = (1422 {COShIA(to - T)[ - 1} — Ze )1/2 (44)

. —Flightpath

*o

Sy

Zy

Fig. 4 The flight path is located in the horizontal X, Zo-plane and
may be inclined by the angle @ against the x,-axis.
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In presence of a constant acceleration B, in the tangential
direction the coordinate £ — £, is given by

f—bimt—x,— M(r—1t,)— (B2 —1,)* (45

Under the condition (32), Eq. (44) can be expanded in a series:

E—x,=—~2vM+ M(r—t,) +
AM
(r— t,,)ziquT(ﬁ2 — MBtanh | Ap|) + -+

(46)

with B = (M? — )i/,
Then the coordinate £ — £, can be expressed
E—Ca=—22M +
. AM B 1
)27 g2 fadd e
(r—1,) Ztgh[A,u](ﬁ {MBA+M}Atanh|A,u[)—Q—
47

Replacing the integration variable £ in Eq. (30) by £ — &,
the distance function can be written with the aid of Egs. (33)
and (38) as follows:

1/2
G’([.L) - % (C;p][)’op) %

oo 87 = [pa+ B annan}|
0 BA+ <71~ tanh|Ap|
with

Liw) = % sinh| Ap|cosh|Ap]. (48)

The denominator of Eq. (48) is zero if the waves form a cusp.
However, this singularity is an integrable one, and the shock
waves behind the cusp can be calculated.

In the case A =0, the formulas for the isothermal atmo-
sphere are obtained,? and in the case 4 =0 and « =0, the
formulas for the homogeneous atmosphere are reproduced.®
Now the bicharacteristic », which hits the shock at a distance
given by u, can be obtained by an iteration of Eq. (41) with
the aid of Eq. (48). Then the perturbation pressure and
coordinates are determined by (35), (36) and (38). The
sonic-boom signatures of a parabolic arc are shown in
Fig. 5-6.

I T
|
ADT ;\\%_\ Explicit Formula [
iy s >~ |
o
Ji —~ >~ ]
1 ~
! I~
3 I \\
10 L =
8 NS
6 L™
5 \
4 | N
l W
3 ! Q
N\
\§
2 % X
N
! \
N
10° il : ] ,
456 810 2 4 6 8107 5, —= 10
6472m  162.00m 1625m z —=  16710m

Fig. 5 The pressure jump Ap across the head wave below the flight

path (0 = 0) divided by the local static pressure p, is plotted against

ray distance §, and altitude z for steady flight at M =1,7. The

length of the parabolic arc is /=20m and its apex half angle

8 = 5°. The polytropic stratification is defined by a sound velocity

of ¢,, =300 m/sec at flight altitude, a sound velocity gradient of
m = 4.102 1/sec and the gravity acceleration.
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t =t Cop

— 0.3
— 0.2

— 0.1

!
3107 p/p,

Fig. 6 N-wave at different distances measured along the ray.

Shock-wave propagation in lateral direction (0 # 0) means
that the vertical plane containing the ray (Fig. 4) does not
contain the flight path. Therefore, the exact potential at a
point  P(x0,¥.,20,1,) can be obtained rigorously only by a
four-dimensional treatment of the integration over the distri-
bution of sources and sinks on the flight path. However,
the distance function must approximate the corresponding
formula for the homogeneous atmosphere in the near field.
On the other hand, G'(x) must have a singularity, if, according
to geometrical acoustics, a cusp occurs. The considerations
just described lead to

’ Co 3 CopPo 1z
=2 (222

. . B\1 | -1z
[L(p)(,@z — { M cosfBA + Mt} ztanhIAy[)]
with
B = (M? cos20 — 1)/2 49)
B and L(p) are defined in Egs. (46) and (48) respectively.

Flight Path Inclined (® # 0)

If the flight path of the body is inclined (see Fig. 4) against
horizontal x, axis, it should Be noted that ¢,, is a function of
t,.'¢ The quantity &, is introduced

£ =1, + (BJ2)(5,2), x, = £, cos®, z, = fp sin® (50)
(see Eq. (6)).

For 8 # 0, the distance function can be determined similar to
Eq. (49).

1/2 3 B
Gy =22 (Cp—pp) g[ﬂ@(ﬁ’ -

Co \ CoDo

B 3 1 ~-1/2
{(Mcos 6 cos @ + M sin D)4 + %} Ztanh]Aul)]

with
B = (M?(cos? @ cos? § + sin? D) — 1)1/2 (51)
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Curved Flight Path

In this case, the sonic boom position can be taken again
from geometrical acoustics.!® It should be noted that y, is a
function of ¢,, since there is a radial acceleration in the direct-
ion normal to the flight path

d?y,/dt,* = B, = M?*|Rx (52)

For a curved flight with the flight path inclined, (® # 0)
G'(w) is then given by

Gl(/") = (Cop/CO)(coppop/copo)I/Z(B/IQ)
. [L(,u) (,(-_32 — {(M cosf cos ©F +

1 1 -1z
i ® - t r -
M sin®)A4 + M(B + B, tanﬁ)}AtanhlAp[)]
with 8 = (M2(cos2® cos?6 + sin?®) — 1]'/2 (53)

B and L(p) are defined in Eqs. (46) and (48), respectively.
Note that there is no influence of the curvature on the sonic
boom propagating in the tangential plane of the flight path
since 8 = 0.

Conclusions

Solutions for singularities in a polytropic atmosphere are
derived. Using the analytic methods of singularities and of
characteristics,** the sonic boom of the body is obtained
analytically. A parabolic arc is chosen as an example.
The asymptotic Whitham formula for the bow wave is
improved by an explicit formula giving sufficiently accurate
results for distances of about 20 body lengths or larger.

The shock-wave propagation below the flight path is
derived rigorously. But to avoid a four-dimensional treat-
ment, the shock-wave propagation into the lateral direction
is concluded from that it must have a singularity if the waves
form a cusp, and must approximate the propagation of a
homogeneous atmosphere in the near field. The method pre-
sented can be extended to describe the influence of a three-
dimensional configuration, if the configuration is replaced by
the corresponding distribution of singularities. The sonic
boom resulting from lift can be investigated, making use of
ideas of Oswatitsch and Sun. 2*°22 The method presented can
also be generalized to a second-order sonic-boom theory with
the aid of ideas of Schneider'® and of Landhal, Ryhming
and Lofgren.'*

There are several other applications of the analytic first-
order solution presented. It is valid beyond the scope of
geometric acoustics, since it satisfies the wave equation,
and can also be applied as initial solution in the theory of
propagation, scattering, and absorption of noise in a polytropic
atmosphere.
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